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USING ASSUMED ENHANCED STRAIN ELEMENTS
FOR LARGE COMPRESSIVE DEFORMATION
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Hibbitt, Karlsson & Sorensen, Inc., 1080 Main Street, Pawtucket, RI 02860, U.S.A.

Abstract-The fonnulation of the assumed enhanced strain element proposed by Simo and Annero
[(1992). Geometrically non-linear enhanced strain mixed methods and the method of incompatible
modes. Int. J. Num. Methods Engng 33, 1413-1449] encountered difficulties for large compressive
deformation with hyperelastic or elastic/plastic materials. The improved fonnulation presented by
Simo et at. [(1993). Improved versions of assumed enhanced strain tri-linear elements for finite
deformation problems. Camp. Methods Appt. Mech. Engng 110, 359-386] proposes to alleviate this
deficiency with a modified quadrature rule and shape function derivative calculation. In this work, we
show an alternative approach which attempts to avoid this limitation by treating the orthogonality
constraint on the enhanced field in rate fonn. Copyright © 1996 Elsevier Science Ltd.

1. INTRODUCTION

Practical considerations, such as automatic mesh generation, rezoning, enforcing contact
constraints, and computational speed, promote the use of low-order elements. It is well­
known, however, that the standard bi-linear quadrilateral and the tri-linear brick elements
perform poorly in bending dominated problems and show a "locking" response in the
nearly incompressible limit. Reduced integration elements provide relief at the expense of
accuracy and the introduction of spurious zero-energy modes, requiring stabilization. It is
not surprising, then, that the quest for an all-purpose, locking-free, fully-integrated, first­
order element that can be used for nonlinear applications has received considerable attention
in the literature.

Mixed finite element techniques have made significant inroads toward overcoming
some of these limitations. As examples, for plasticity, the mean dilatation approach of
Nagtegaal et at. (1974) circumvents locking in the incompressible limit. For plane stress
elasticity, the interpolation procedure by Pian and Sumihara (1984) appears to be optimal
in capturing inextensional states of bending stress. However, mixed methods (which take
stress variables as additional solution quantities) suffer from the inherent inability to express
the formulation in the strain-driven format required by the local integration algorithms for
general inelastic materials.

For the infinitesimal theory, the classical method of incompatible modes in Wilson et
at. (1973) provides a way to define a strain-driven formulation that performs well in bending
dominated problems and the nearly incompressible limit. Within this context, Simo and
Rifai (1990) provide a general strategy for constructing assumed strain finite element
methods as a mixed method which incorporates the classical method of incompatible modes
as a specific example. The extension of assumed strain or incompatible mode methods to
nonlinear applications is not straightforward. In Simo and Armero (1992), a general
methodology for performing this extension to the nonlinear theory is given. In addition to
excellent performance in bending dominated states of stress and for nearly incompressible
materials, the elements work well in capturing strain localization effects. The elements have
been shown, however, to break down in highly constrained problems with large compressive
deformation for both hyperelastic and elastic/plastic materials,

An improvement to the original formulation of the assumed enhanced strain elements
is given by Simo et at. (1993). There, a modification to the integration rule, an approximate
spatial gradient on the "hour-glass terms", and the inclusion of an additional volumetric
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mode appear to alleviate these deficiencies. They show very encouraging results for elas­
tic/plastic materials under high compression.

We provide an alternative strategy for overcoming these limitations in the following
sections. Our approach involves enforcing the orthogonality condition on the enhanced field
through a linearized constraint written in rate form. This approach has shown considerable
success.

In both the improvement by Simo et af. (total form) and the rate or incremental form
outlined later, there still appears to be an important issue remaining. The enhanced assumed
strain method is not (technically) an incompatible method, as the enhanced fields are not
the gradient ofan incompatible displacement field and continuity across element boundaries
is not required. However, by adding an enrichment to the deformation gradient, the
definition of the current volume of the element becomes ambiguous. For the method to be
truly compatible, it would seem logical to require that the element volume measured by the
position mapping (i.e., by the unenhanced deformation gradient) and the deformation
gradient including the enhancement be the same. Otherwise, "fictitious" volume generation
or loss can occur, disrupting mass continuity and energy balance. This volume equivalence
motivates our statement of the central orthogonality condition in rate form. It does not
appear possible to construct an enhancement that does not alter the volume at all, however,
the rate of volume change can be minimized.

2. REVIEW OF THE FORMULAnON

In this short work, we will not provide a full derivation or presentation of the enhanced
strain formulation. For more complete details, see Simo and Armero (1992) and Simo et
al. (1993), since these works form the basis for the discussion below. For clarity and
definition of notation used in this presentation, we simply summarize the finite element
weak form of the initial boundary value problem, restricted to geometrically nonlinear
static analysis and hyperelastic constitutive relations.

Let n c R"dim (ndim = 2 or 3 is the dimension of the space) be the reference configuration
of the body with smooth boundary r. Points in the body are labeled X E n. The deformation
ofthe body is defined by the smooth map qJ(') on n u r. Furthermore, let r q> be the portion
of the boundary in which the deformation is prescribed by 1p = qJ Ir .Points in the deformed
body are labeled x E qJ(n) and are given by ~

x = qJ(X) = X+u(X), where u( .) is the displacement field.

The conforming part of the deformation gradient (the part defined by the deformation
map) is

oxax = GRADx[qJ] = 1+GRADx[u].

For clarity, we restrict the symbol F to be the sum of the conforming part of the deformation
gradient plus the enhancement, as defined below.

The nominal stress tensor (unsymmetric, first Piola-Kirchhoff stress tensor) is denoted
by P and the nominal traction T = PN on the boundary r with normal N is specified on
r T eras t. The boundary partition satisfies r Tn r q> = 0 and r T u r q> = r.

To state the weak form of the governing equations, we introduce the space Y of
conforming test functions:

Finite element approximations to all quantities are denoted by appending the superscript
h, so that yh c y is the finite element approximation to the space of conforming test
functions and qJh is the finite element approximation to the deformation mapping qJ, etc.
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The details of the finite element approximations, however, are omitted since they are
standard and not integral to the current discussion.

The key idea in the assumed enhanced strain method is that an independent field is
added to the finite element approximation of the deformation gradient, Fh, so that

where FhE gh is the enhanced field. Note that, as yet, the enhanced space gh is not specified.
In a standard finite element method, GRADx[q>h], referred to here as the conforming part,
is the finite element approximation to the deformation gradient.

Let B be the body force per unit reference volume. Denote the L 2-inner product on Q

by <.,. > and the L2-inner product on the boundary r by <.,. >r. The three-field Hu­
Washizu functional in the variables (q>, F, p> in Simo and Armero (1992) can be written
as two variational equations (see Simo et al. (1993)) which define the equilibrium equations.

<ph,GRADx[bq>h])-<B,b(l>-<T,brl>r = 0 VbrlEyh,

<ph, bFh>= 0 VbF h
E Tgh. (I)

Here, Tgh is the tangent space to the space of enhancements gh. In Simo and Armero
(1992), gh c g, where g is the linear space {F: Q ~ ,2ndim : P~ E L 2(O)}, where ,2ndim is the
vector space of real ndim x ndim matrices. In this case, Tgh = gh. Since, for now, the space gh
is left unspecified, the tangent space Tgh is also undefined.

The nominal stress field ph is computed from the constitutive equation with the
enhanced deformation gradient as

(2)

Equations (I, 2), along with the boundary condition q>hl r = qi, define the boundary value
problem for the finite element method implementation. ~With the exception of the speci­
fication of gh (and Tgh), the above formulation is as given in Simo and Armero (1992).

3. KINEMATIC REQUIREMENT ON THE ENHANCED FIELD

The conceptual goal of the enhanced method is clear. A solution dependent field, with
an assumed form, is added to the deformation gradient such that the enriched deformation
gradient leads to a finite element method that is free from the unenhanced method's poor
performance (locking due to parasitic shear and Poisson's ratio effect in bending), while
retaining most or all of its positive attributes.

The enhancement to the deformation gradient can not be arbitrary. In Simo and
Armero (1992), two fundamental restrictions are placed on admissible fields:

(i) The tangent space to the enhanced field is L2-orthogonal to constant nominal stress
fields. From eqn (I h, this condition requires that

where V is the reference element volume.
(ii) The finite element space spanned by the independent enhanced fields is not contained

in the finite element space spanned by the gradient of the displacement variations.
This condition requires that
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GRADx[j'h] (l ~ is empty.

These two conditions ensure that the element passes the nonlinear version of the patch
test (exact representation of the stress due to the total deformation which is homogeneous).

The patch test is a condition placed by equilibrium on the finite element sub-spaces.
We propose that a further kinematic restriction be placed on the enhancement, one that
states that the enhanced field alone (that is, for a fixed position mapping) can not add or
subtract volume.

To see how to enforce this condition, we follow the standard construction of the
enhanced field test functions. Consider a one-parameter curve of deformation gradients
about the current configuration. The deformation gradient to the current configuration is
defined by the gradient of the position mapping, (l, and the (non-zero) enhanced field, Fh.
Here, the position mapping is held constant and the enhancement is allowed to vary. The
one-parameter curve of deformation gradients is defined by the linear relationship

(3)

Note that F; IE~O = F h = GRADx[cph]+F hand (d/de)IE~oF; = bF h
. It is important to note

that for the current configuration, the enhanced field F h is (possibly) non-zero.
The deformation gradient F h is a linear, orientation preserving transformation between

the reference and current configurations. Therefore, F; in equation (3) must be a linear,
orientation preserving transformation between the reference and current configurations.
This requirement only restricts the admissible fields bF h to be linear transformations between
the reference and current configurations which preserve the condition det [F;] > O.

It is our concern that this freedom to choose the test functions bF h as any linear
transformation gives too much freedom to the enhancements to alter the volume measured
by the deformation gradient. We feel that for e small, the enhanced field alone can not
change the measured volume of the body. This is equivalent to the statement that the
instantaneous rate of change of the volume due to enhanced field is zero. This requirement
places the following restriction on the test functions bF h

:

(4)

where the current element volume measure is dv = detF%(~) dO, jo(~) is the Jacobian
determinant of the reference configuration, ~ ED, and D is the isoparametric domain.

The condition (4) is derived as follows. The current element volume is defined

By a standard identity for the determinant function,

Note that for ndim = 2, det F; = det Fh+ tr(ebFhFh-') detFh. The perturbed volume is

volume, = fo detF;jo(~)dD

= fo {detFh+tr (ebFhF h-') det Fh+o(ebFh)}jo(~) d D
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For e small (or in the limit as the increment in time goes to zero), the o(ec5F h
) terms can be

neglected. (For ndim = 2, this term is zero.) Since we require that the volume remain
unchanged, the condition (4) follows.

The condition (4) does not imply that the enhancement Fhdoes not contribute to the
overall volume. In a nonlinear finite element solution procedure, it implies that the increment
in the enhancement is orthogonal to the volume of the element at the beginning of the
increment. As the position mapping cph changes and the enhancement Fh is accumulated,
the element volume measured by F h will be different from that measured by GRADx[cph].
Instantaneously, however, to first order, increments AFh in the enhanced field should not
change the volume of the element if the displacement increment is zero.

This condition is a kinematic constraint derived from an assumption about the way
the element volume is permitted to change due to a perturbation of the enhanced field.
Returning to equilibrium, however, this condition can be interpreted as requiring that
the variation in the enhancement is orthogonal to a piecewise constant pressure field,
ph = -(l/ndim)trah, where ah is the true or Cauchy stress tensor. To see this, recall that the
nominal stress is related to the Cauchy stress through

Write ah as a deviatoric part Sh and the hydrostatic pressure, ah = sh_phl. Then equation
(l)2 becomes

0= <ph, c5F h)

= <detFhah,c5FhFh-l)

= <det Fhsh, c5FhFh- 1
) - <det Fhphl, c5FhFh- 1

)

= <det Fhsh, c5FhFh-
1

) - L/h tr(c5FhFh-
1

) det FhdOh,

where, for clarity, the definition of the L2-inner product is written explicitly for the pressure
term. If we require that the enhancement be orthogonal to piecewise constant pressure
fields, then the last integral must vanish over each element. This yields the volume condition
in eqn (4), one which the test functions c5Fhmust satisfy in each element:

We view this condition as a third requirement placed on the test functions c5Fhin addition
to conditions i and ii stated earlier.

The above volume condition places a nonlinear constraint on the enhanced field Fh.
Hence, the space of enhancements J'h is no longer a linear space. Constructing the enhance­
ment FhEJ'h such that c5FhE TJ'h satisfies eqn (4) does not appear to be straightforward.

4. INCREMENT IMPLEMENTATION IN ABAQUS

Satisfaction ofthe volume condition above and the incremental version ofthe nonlinear
patch test motivate the ABAQUS incremental formulation. The nonlinear patch test
requires that a patch of elements exactly represents a homogeneous (total) deformation
field. Furthermore, if we require that a patch of elements exactly represents a homogeneous
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deformation superposed on the (non-trivially) deformed configuration, we get the incremen­
tal nonlinear patch test. The primary idea is that the enhanced field is constructed on the
element geometry at the beginning of the increment in a nonlinear solution procedure and
added to the incremental deformation gradient. For more complete details of the ABAQUS
implementation, see the ABAQUS Theory Manual (1994). In the construction that follows,
approximate satisfaction of the volume condition occurs as a byproduct of the satisfaction
of the incremental nonlinear patch test.

The deformation gradient at any time during the deformation can be written as the
product of a series of incremental deformations:

Let i denote the increment that advances the solution from time t to time t+ ilt; then we
write

Denote the Jacobian transformation from the isoparametric domain to the beginning
of the increment (time t) by J,(~), so that

ax,
J,m = a~ and M~) = det(J,(~)).

We construct the enhancement to the incremental deformation gradient in the following
way:

The field ilg is constructed between the parametric domain and the deformed element
domain at time t as

where ila.t(i = 1, ... ,ndim) are independent degrees of freedom and ~i are the vectors, in two­
dimensions,

or, in three-dimensions,

The enhancement to the incremental deformation gradient can be written in terms of the
independent degrees of freedom as
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To see that the above construction passes the incremental patch test, use the identity

Introducing the expressions for the deformation gradient in terms of the enhancements, we
see that

or

To satisfy the incremental patch test, this quantity must be orthogonal to a piece-wise
constant Cauchy stress field (eqn (lh written in terms of (1h), or equivalently, its integral
over the element's volume must vanish:

1c5F hF h
-

1
dv, = Lb(,1F h ),1Fh

. I dv,

= fo (bei ®;:i~~ J,(O)-T~I),1Fh 'j,(~) dO

= j,(O)boci ® fo ,1Fh-TJ,(O)-T~idD.

For an incremental deformation that is homogeneous, ,1Fhis constant over the element and
can be taken outside the integral. Since JD ~id 0 = 0 by construction, it follows that

(5)

The trace ofeqn (5) satisfies the volume condition stated in eqn (4) only for incremental
deformations which are homogeneous. For non-homogeneous deformations, there is no
guarantee that the volume constraint is satisfied.

5. NUMERICAL EXAMPLES

The assumed enhanced strain elements perform well in bending dominated problems
and in strain localization problems in the original formulation by Simo and Armero
(1992) and ABAQUS's incremental formulation (for several examples of the ABAQUS
implementation, see the ABAQUS/Standard Example Problems Manual). What is at issue
is the element's performance in compression. We present below a representative simulation
(the upsetting ofa cylindrical billet) with an elastic/plastic material. The level ofdeformation
is not extreme; the results shown are accurate. (Since this is a standard numerical test
problem, accuracy is defined in comparison with other accepted simulations.) However, for
this level of deformation, the original assumed enhanced strain formulation breaks down.

This example is an extension of the standard test case by Lippmann (1979). The
specimen is a cylindrical billet, 30 mm long, with a radius of 10 mm. It is compressed
between two flat, rigid dies with perfectly rough (i.e., no slip) surfaces. The finite element
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Fig. 1. Elastic/plastic compression of a cylindrical billet.

model consists of four-node axi-symmetric solid elements. Half symmetry of the axi­
symmetric model is used, with a 12 x 12 mesh. The die displacement causes 60% upsetting.
The material has Young's modulus 200 GPa, Poisson's ratio 0.3, initial yield stress 700
MPa, and work hardening rate 300 MPa.

6. CONCLUDING REMARKS

In this work, we argue for an additional constraint to be placed on the enhancement
to the deformation gradient, one that requires that the variation of the enhanced field
is orthogonal to a piece-wise constant pressure field. This condition has the kinematic
interpretation that the instantaneous rate of change of the volume due to the enhanced
field only (that is, with the nodal positions held fixed) is zero. We identified this as a
deficiency in the original formulation of the assumed enhanced strain elements by Simo
and Armero (1992). In the improvement by Simo et al. (1993), this condition remains
unsatisfied. In the ABAQUS implementation, an incremental approximation to this volume
constraint is used, whereby the enhanced field is constructed at the beginning of each
increment and added to the incremental deformation gradient. Although this approach
alleviates some of the original element's sensitivity to distortion under high compression, it
does not appear to be a comprehensive solution.

We believe that satisfaction of the volume constraint is essential to obtain a robust
formulation, particularly for applications in which large compressive strains and high
hydrostatic pressures occur. Consequently, we are somewhat puzzled that Simo et al. (1993)
are able to analyze problems of this type with a formulation that does not seem to satisfy
the volume constraint. We hope that it will be possible to provide an explanation for this
apparent contradiction.
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